天天更新国产最新在线|伊香蕉大综综综合久久|国产精品无码A∨在线看|欧美精品午夜久久久伊人|成人欧美一区二区三区视频|一区二区国产欧美在线视频|久久久AV无码精品亚洲日韩|性色视频一区二区三区在线观看

復(fù)納科學(xué)儀器(上海)有限公司
新聞動(dòng)態(tài)
您現(xiàn)在所在位置:首頁 > 新聞動(dòng)態(tài) > VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

 更新時(shí)間:2024-11-25 點(diǎn)擊量:280

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

 

在上一篇文章(AI 時(shí)代,高通量新催化劑怎么獲得?加州理工告訴你)中,我們討論了能源領(lǐng)域材料發(fā)現(xiàn)的緊迫性以及自驅(qū)動(dòng)實(shí)驗(yàn)室(SDL)中高通量實(shí)驗(yàn)的重要性。本文將介紹 SDL 的重要性以及推動(dòng)其發(fā)展的突破性舉措。我們還解釋了 VSParticle 技術(shù)如何為未來的 SDL 發(fā)展提供可重復(fù)的試驗(yàn)方案。此外,本文將探討去中心化和開源的相關(guān)性,以及這些概念如何改變材料開發(fā)的效率。

 

● 

 

Part.1

AI 自驅(qū)動(dòng)實(shí)驗(yàn)室 (SDL) 通過將機(jī)器人技術(shù)、人工智能和機(jī)器學(xué)習(xí)相結(jié)合,實(shí)現(xiàn)實(shí)驗(yàn)的自動(dòng)化和優(yōu)化,改變了組合方法。這種技術(shù)的整合有望將材料開發(fā)的速度大幅提高 100 倍,遠(yuǎn)遠(yuǎn)超越人類的極限。

在 SDL 中很核心的一環(huán)是通過高通量實(shí)驗(yàn)收集數(shù)據(jù),然后輸入到 AI 系統(tǒng)中。AI 系統(tǒng)從結(jié)果中學(xué)習(xí),并預(yù)測具有特定應(yīng)用所需特性的候選材料。然后,機(jī)器人平臺通過合成和評估材料來自主測試從而驗(yàn)證這些預(yù)測。數(shù)據(jù)、計(jì)算和實(shí)驗(yàn)的整合至關(guān)重要,每個(gè)元素都在反饋回路中引導(dǎo)和完善其他元素(圖 1)。 

 

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

圖 1. 自驅(qū)動(dòng)實(shí)驗(yàn)室的工作流程——執(zhí)行階段

 

在這個(gè)數(shù)據(jù)豐富的范式中,快速生成和分析大量實(shí)驗(yàn)數(shù)據(jù)的能力是推動(dòng)進(jìn)步和創(chuàng)新的基礎(chǔ)。進(jìn)行的實(shí)驗(yàn)越多,人工智能學(xué)習(xí)的速度就越快。因此,理想的 SDL dian覆了傳統(tǒng)的材料開發(fā)過程,科學(xué)家可以首先確定所需的材料屬性,然后再逆向開發(fā)新材料,而無需在實(shí)驗(yàn)室中反復(fù)試驗(yàn)。VSParticle 的納米打印機(jī)可實(shí)現(xiàn)無機(jī)金屬/氧化物材料的可控合成,從而支持高通量實(shí)驗(yàn),是 SDL 不ke或缺的一部分。

VSP-P1 納米印刷沉積系統(tǒng)已被 UL 研究所和 DIFFER 等頂級機(jī)構(gòu)的前沿研究團(tuán)隊(duì)采用。通過將該合成模塊集成到 SDL 中,使研究人員和行業(yè)能夠加速氣體傳感、催化、電催化等各個(gè)領(lǐng)域的材料開發(fā)過程。

 

● 全球 SDL 先驅(qū)

 

Part.2

全球有許多 SDL 的先驅(qū)研究者。盡管尚處于開發(fā)初期,但一些  SDL 已經(jīng)取得了令人印象深刻的成果,這些成果不僅加速了材料的發(fā)現(xiàn),還簡化了研究流程,大大推動(dòng)了新能源材料的開發(fā)。這里列舉了一些多邊合作涉及的研究機(jī)構(gòu)、高校和行業(yè)yingd者,他們正在努力推動(dòng)這一領(lǐng)域的創(chuàng)新。(其中,標(biāo)記的組都在和 VSParticle 合作)

 

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

 

 

● 去中心化的重要性和開源數(shù)據(jù)

Part.3.

 

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

圖 2. 分散研究的互聯(lián)互通性和靈活性

 

傳統(tǒng)研究方法尤其是化學(xué)合成往往是獨(dú)立的,不同機(jī)構(gòu)間缺乏數(shù)據(jù)共享,導(dǎo)致全球范圍內(nèi)大量的重復(fù)性研究以及科研資源的浪費(fèi)。實(shí)驗(yàn)室的研究成果無法轉(zhuǎn)化為實(shí)際應(yīng)用,極大阻礙了該領(lǐng)域的發(fā)展。有數(shù)據(jù)表面,全球可能有數(shù)十億美元的經(jīng)費(fèi)被浪費(fèi)在重復(fù)研究工作中。

 

● 新的解決方案

 

Part.4

去中心化研究和數(shù)據(jù)開源可以有效應(yīng)對這些挑戰(zhàn)。在分散的研究網(wǎng)絡(luò)中,不會(huì)出現(xiàn)“單點(diǎn)故障"(如圖 2 所示)。如果某一個(gè)課題出現(xiàn)瓶頸,其他課題可以繼續(xù)運(yùn)行,保持整體研究勢頭。這種冗余確保科學(xué)進(jìn)展不會(huì)因局部問題而停滯不前。數(shù)據(jù)開源允許材料開發(fā)人員修改、定制和構(gòu)建現(xiàn)有的候選方案。這種靈活性使研究人員無需從 0 開始設(shè)計(jì)方案,而可以在可追溯的研究成果基礎(chǔ)上進(jìn)行創(chuàng)新。 

開源數(shù)據(jù)是這一新模式的另一個(gè)關(guān)鍵組成部分。通過自由共享數(shù)據(jù),研究人員可以避免重復(fù)工作,并更有效地借鑒彼此的工作成果。

而積累共享數(shù)據(jù)的第一步需要高通量實(shí)驗(yàn)室生成大量數(shù)據(jù),通過跨組織的協(xié)作進(jìn)行數(shù)據(jù)分析和數(shù)據(jù)庫建立。META AI 就是開源數(shù)據(jù)如何改變材料開發(fā)速度的典型。通過提供共享實(shí)驗(yàn)數(shù)據(jù)的平臺,META 促進(jìn)了科研工作者之間的協(xié)作并加速了創(chuàng)新。

正如多倫多大學(xué)教授 Jason Hattrick Simpers 所說:“我們的目標(biāo)不是進(jìn)行 10 萬次或 10 億次實(shí)驗(yàn),而是利用機(jī)器學(xué)習(xí)等概念在任何給定時(shí)間內(nèi)進(jìn)行具價(jià)值的實(shí)驗(yàn)。

 

● VSParticle – SDL 的堅(jiān)實(shí)基礎(chǔ)

 

Part.5

SDL 是材料開發(fā)的一次重大變革,它結(jié)合了人工智能、機(jī)器人技術(shù)和高通量實(shí)驗(yàn),可以快速發(fā)現(xiàn)和優(yōu)化新材料。研究數(shù)據(jù)的分散化和開源進(jìn)一步增強(qiáng)了 SDL 的潛力,促進(jìn)了合作并確保全球能夠都享受并利用技術(shù)的進(jìn)步。 

雖然人工智能大大加快了新材料的發(fā)現(xiàn)和驗(yàn)證,但缺乏將這些創(chuàng)新從實(shí)驗(yàn)室擴(kuò)展到工業(yè)生產(chǎn)方法。VSParticle 提供了一種強(qiáng)大且可擴(kuò)展的技術(shù)來促進(jìn)從研究到工業(yè)生產(chǎn)的轉(zhuǎn)變,確保通過人工智能識別的有前景的材料能夠大規(guī)模高效生產(chǎn)。

 

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

圖 3. VSParticle 沉積方法從 SDL 高通量實(shí)驗(yàn)室到未來的工業(yè)量產(chǎn)

 

VSParticle 線上研討會(huì)(獲取直播回放

 

VSParticle 助力 AI 自驅(qū)動(dòng)實(shí)驗(yàn)室加速材料研究

 

 

了解相關(guān)課題組歡迎聯(lián)系我們

  1. Serhiy - Electrocatalysis group

  2. Dominik HT group

  3. MDRI 

  4. About Us | UL Research Institutes

  5. CEPEA

  6. AMD-DIFFER

  7. Jason Hattrick-Simpers - Department of Materials Science & Engineering

  8. Home - Ada 

  9. Alán Aspuru-Guzik | Department of Chemistry

  10. Curtis Berlinguette | UBC Chemistry

  11. Jason Hein | UBC Chemistry

  12. Flow Chemistry and Microfluidics 

  13. Milad Abolhasani | Department of Chemical and Biomolecular Engineering 

  14. MIT - Jensen group

  15. Klavs F. Jensen – MIT Chemical Engineering

  16. Timothy F. Jamison – MIT Department of Chemistry

  17. Connor W. Coley – MIT Chemical Engineering

  18. Accelerate consortium

  19. CAPEX-DTU

  20. Tejs Vegge — Welcome to DTU Research Database

  21. Acceleration Consortium 

  22. Open Catalyst Project



傳真:

郵箱:info@phenom-china.com

地址:上海市閔行區(qū)虹橋鎮(zhèn)申濱路 88 號上海虹橋麗寶廣場 T5,705 室

版權(quán)所有 © 2018 復(fù)納科學(xué)儀器(上海)有限公司   備案號:滬ICP備12015467號-2  管理登陸  技術(shù)支持:化工儀器網(wǎng)  GoogleSitemap